STANDARDIZING THE USE OF SERIES ELASTIC BANDS IN ACCELERATION TRAINING – PRACTICAL STRATEGIES FOR THE COACH

JONATHAN ANNING, PHD, CSCS,*D, FNSCA, CHRISTOPHER HUGHES, PHD, PT, OCS, CSCS, STEPHEN SPRIGLE, PHD, PT, AND CHRIS HAYS, MS, CSCS

Disclosure: No conflicts of interest and no sources of funding are declared.

eries elastic bands (SEBs) offer a variable resistance model that can enhance acceleration training by progressively Increasing tension throughout sprint movements. This article presents a framework for standardizing SEB resistance to help strength and conditioning coaches optimize load prescription. maintain sprint mechanics, and improve performance outcomes. Building on research comparing sled towing and uphill running, SEB training offers a portable and adjustable alternative that aligns resistance with the athlete's natural force-velocity profile. Exploration of the biomechanical relationship between kinetic and potential energy during resisted acceleration outlines regression-based methods for estimating SEB forces and provides programming considerations to individualize loading and apply progressive overload. Practical applications and future research directions are included to integrate SEB training with timing systems, velocity-based feedback, and traditional resisted sprinting. By standardizing SEB use, strength and conditioning coaches can better ensure training precision, enhance acceleration development, and reduce the risk of technique disruption.

Athletes, sports coaches, and strength and conditioning coaches are constantly searching for innovative and effective strategies to improve acceleration, one of the most critical determinants of performance across nearly every sport. Traditional resisted sprint training methods, such as sled towing and uphill running, have long been used to enhance acceleration by increasing force demands during sprinting. While these methods can be effective, their application can also be imprecise: excessive load during sled towing (e.g., > 20% of body mass) or overly steep uphill sprints may alter sprint mechanics and limit performance adaptations (2,12,13). This highlights the need for more controllable, individualized resistance methods.

Multiple SEBs connected "head to tail" to create a continuous stretch, offer a promising alternative. Unlike traditional methods that apply static or constant resistance, SEBs provide progressive resistance that increases as the band stretches, more closely matching the athlete's natural force-velocity profile during acceleration (1). This unique quality allows for more precise loading, potentially enhancing power output and force production without compromising sprint technique.

Despite these advantages, a significant gap remains in the field because there is no standardized approach for prescribing SEB resistance for acceleration development. Without clear loading guidelines, strength and conditioning coaches risk either underloading (limiting adaptations) or overloading (disrupting sprint mechanics). This article aims to address that gap by

proposing a framework for standardizing SEB resistance training based on principles of kinetic and potential energy, biomechanical demands, and individualized athlete needs. In addition, it explores practical programming considerations and future research directions to integrate SEB training into evidence-based speed development strategies.

POTENTIAL AND KINETIC ENERGY PRINCIPLES IN ACCELERATION DEVELOPMENT

When developing acceleration, understanding the interaction between potential and kinetic energy provides a foundational framework for designing effective SEB resistance training programs. These energy forms work together to determine how efficiently an athlete produces and transfers force during sprinting.

During the initial steps of acceleration, kinetic energy dominates. The athlete rapidly applies force to the ground to increase forward velocity, generating momentum that propels the body forward. As Weyand et al. showed, faster running speeds are achieved through greater ground forces rather than faster leg movements (14). Therefore, SEB exercises designed to enhance acceleration should prioritize kinetic energy transfer, emphasizing short-distance, high-intensity sprints with optimal technique and rapid force application.

SEBs allow strength and conditioning coaches to manipulate kinetic energy dynamics more precisely than traditional sled or hill training. By adjusting band length, tension, and configuration, SEBs provide a progressive form of resistance that increases as the athlete accelerates. This progressive tension ensures that the athlete experiences maximal propulsion through the early drive phase while maintaining technique.

As the athlete reaches higher speeds, potential energy becomes increasingly relevant with the stretched bands. The stretched SEBs store elastic potential energy, requiring the athlete to overcome this resistance and maintain or increase velocity. In sports like football or basketball where athletes must maintain momentum against contact or resistance, the ability to overcome potential energy mirrors real-time performance demands.

Strength and conditioning coaches must therefore balance these two energy forces. Too little SEB tension fails to provide adequate overload, while excessive tension can exceed the athlete's kinetic capacity, leading to premature deceleration or altered stride mechanics. In practice, effective SEB training maintains an equilibrium where kinetic energy drives forward acceleration while potential energy challenges but does not restrict performance. This balance should be continually monitored using timing gates, split times, or velocity-based feedback to ensure resistance enhances, rather than inhibits, acceleration development.

ESTIMATING INDIVIDUAL AND SEB FORCES

For SEB training to be standardized and reproducible, strength and conditioning coaches must be able to estimate the resistance forces produced by individual and SEBs at varying lengths. Without this standardization, load prescription becomes inconsistent and can undermine training effectiveness.

Anning et al. developed regression equations for common elastic band colors by testing them with a custom slide tension assembly (Figure 1) (6). This device precisely measured tension-displacement patterns for both single bands and SEBs composed of four bands of the same color connected "head to tail." These equations enable strength and conditioning coaches to estimate variable resistance (in pounds) based on the band's stretched length.

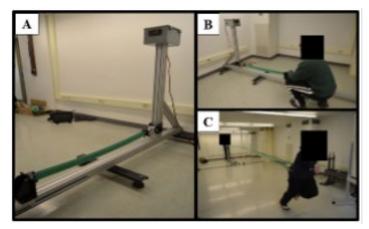


FIGURE 1. A CUSTOM DESIGNED SLIDE ASSEMBLY (A) WAS USED TO MEASURE FORCE-LENGTH RELATIONSHIPS IN INDIVIDUAL (B) AND SERIES (C) ELASTIC BANDS (6)

Regression equations for individual elastic bands (length in inches):

Red = 0.74 (length) + 1.51

Black = 1.15 (length) + 1.77

Purple = 1.67 (length) + 3.08

Green = 2.79 (length) + 4.78

Regression equations for SEBs (four bands tied in series; length in feet):

Red = 1.57 (length) + 3.27

Black = 2.47 (length) + 4.6

Purple = 3.39 (length) + 6.67

Green = 5.93 (length) + 10.07

TABLE 1. VALUES FOR SERIES ELASTIC BANDS RELATIVE TO DISTANCE AND POWER (3)

			* *	
DISTANCE* (FT)	RED POWER+ (KGM/S)	BLACK POWER+ (KGM/S)	PURPLE POWER+ (KGM/S)	GREEN POWER+ (KGM/S)
1	2.2 ± 0.6	3.5 ± 0.8	5.6 ± 1.5	8.8 ± 2.5
2	4.8 ± 0.7	7.7 ± 1.2	11.7 ± 1.6	17.4 ± 2.8
3	7.5 ± 0.6	11.6 ± 1.7	17.6 ± 1.8	26.8 ± 4.1
4	9.8 ± 0.8	15.2 ± 1.9	23.2 ± 2.0	35.3 ± 4.8
5	12.1 ± 1.0	18.7 ± 2.0	28.4 ± 2.3	42.6 ± 5.8
6	14.5 ± 1.2	22.2 ± 2.1	33.6 ± 2.7	50.5 ± 6.5
7	16.6 ± 1.2	25.2 ± 2.5	38.5 ± 3.0	57.6 ± 7.0
8	18.4 ± 1.3	28.4 ± 3.0	43.0 ± 3.3	64.4 ± 7.7
9	20.5 ± 1.3	31.2 ± 3.0	47.1 ± 3.7	70.2 ± 7.6
10	22.4 ± 1.7	33.4 ± 3.0	51.0 ± 3.3	75.3 ± 7.9

^{*}All distances are significantly different from each other (p < 0.01)

⁺All bands are significantly different from each other (p < 0.01)

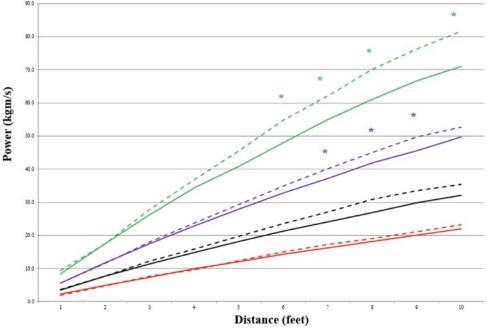
STANDARDIZING THE USE OF SERIES ELASTIC BANDS IN ACCELERATION TRAINING – PRACTICAL STRATEGIES FOR THE COACH

EXAMPLE APPLICATION:

If a strength and conditioning coach uses four green bands tied in series stretched to 10 ft, the estimated resistance equals:

Force =
$$5.93 (10 \text{ ft}) + 10.07 = ~70 \text{ lb}$$

This provides a practical way to prescribe consistent resistance relative to the athlete's strength and training goal. Strength and conditioning coaches without access to a custom slide device can approximate SEB tension by measuring stretch distance with a tape measure and applying these equations. It is important to note that minor variability may occur due to band type, material wear or temperature differences, so periodic remeasurements and performance evaluations are recommended. In other words, by quantifying SEB resistance, coaches can individualize loads, compare across sessions, and progressively adjust training to ensure consistency in applied practice and performance.


SEB PROGRAMMING CONSIDERATIONS IN ACCELERATION DEVELOPMENT

Elastic bands provide a flexible, yet quantifiable means to manipulate resistance across multiple training phases. Proper programming should integrate specificity, individualization, and progressive overload, while considering how resistance impacts technique and energy dynamics. Table 1 illustrates how SEB color (band thickness) and length (acceleration distance) interact to influence total resistance and power output (3). Thicker bands or longer acceleration distances increase resistance and stored potential energy, leading to higher power demands.

PROGRAMMING GUIDELINES

- Phase 1: Technical Emphasis (Weeks 1 2):
 10 15 ft resisted accelerations using lighter bands (red/black) to reinforce proper sprint mechanics and body position.
- Phase 2: Force Emphasis (Weeks 3 4):
 10 15 ft resisted accelerations using moderate bands (purple/green) to increase propulsive force and kinetic energy generation.
- Phase 3: Power Integration (Weeds 5 6):
 Alternate SEB resisted accelerations with unresisted accelerations to reinforce the transition from resisted to free acceleration.
- Phase 4: Maintenance or Sport-Specific Application:
 Integrate SEB drills into multi-directional or contact drills
 (e.g., resisted first-step accelerations) to simulate game-like potential energy challenges.

Individual differences must guide programming decisions. Anning et al. found significant variations in power output between male and female collegiate basketball players during resisted running due to body mass and composition differences (Figure 2), underscoring the need for individualized loading (4). Practical indicators of over-resistance include shortened stride length, reduced step frequency, or excessive forward trunk lean. Therefore, strength and conditioning coaches should adjust SEB length, color, or setup accordingly.

*Significantly different from female at same distance (p < 0.05)

FIGURE 2. COMPARISON OF SEB FOR COLLEGIATE MALE AND FEMALE BASKETBALL PLAYERS BASED ON DISTANCE AND POWER (4)

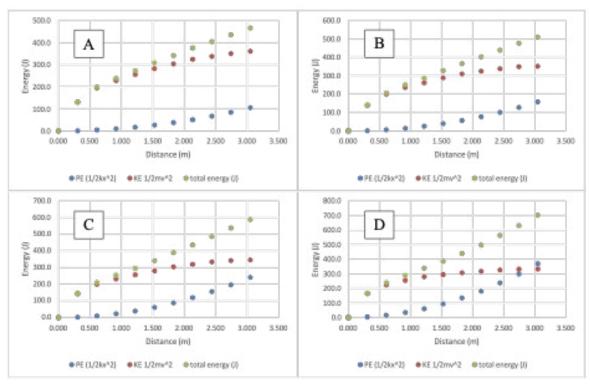


FIGURE 3. POTENTIAL ENERGY (PE), KINETIC ENERGY (KE), AND TOTAL ENERGY (TE) CHANGES ACROSS FOUR SEB COLORS – RED (A), BLACK (B), PURPLE (C), AND GREEN (D) (5)

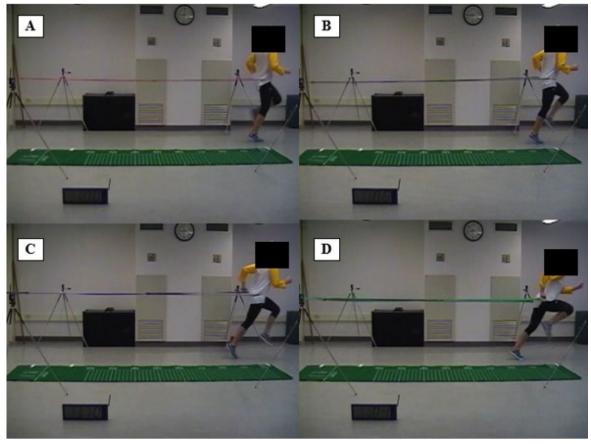


FIGURE 4. BODY POSITION AT 3.048 M (10 FT) USING THE RED (A), BLACK (B), PURPLE (C), AND GREEN (D) SEBs (3)

STANDARDIZING THE USE OF SERIES ELASTIC BANDS IN ACCELERATION TRAINING – PRACTICAL STRATEGIES FOR THE COACH

Also it is essential to distinguish between pure acceleration training and power training. Anning et al. discovered energy impacts on SEB resistance during acceleration development (5). While increased SEB resistance may increase power output and total energy, there exists a threshold where exponential changes in kinetic and potential energy may impede acceleration (Figure 3) and influence technique of body positions (Figure 4). Given these energy influences, using timing gates or split times allows strength and conditioning coaches to verify that each load still supports efficient acceleration mechanics.

PRACTICAL APPLICATION

While the sliding tension assembly described in this article provides a reliable way to quantify SEB resistance, effective implementation requires translating these findings into practical, field-ready strategies. Strength and conditioning coaches should combine SEB training with performance monitoring tools, such as timing gates, velocity-based systems, and resisted sprint protocols to ensure training adaptations are occurring as intended. Below are five ways to utilize SEB training in applied settings:

- SEB Load Standardization and Timing System Monitoring:
 Use timing gates over short sprint distances (5 m, 10 m, 20 m)
 to evaluate whether SEB resistance enhances acceleration
 without altering technique (9). If acceleration and sprint
 times slow disproportionately or body position changes
 significantly, resistance may be excessive, indicating
 that potential energy is surpassing the athlete's kinetic
 output too early.
- 2. SEB and 1080 Sprint Device for Kinetic Energy Optimization: When possible, pair SEB training with devices like the 1080 Sprint device to capture real-time force and velocity data. These metrics allow precise resistance adjustments and ensure that kinetic energy gains translate into faster acceleration velocities (11,15). Comparing SEB-derived resistance profiles with 1080 Sprint data can guide load selection across different phases of acceleration development.
- 3. Comparing SEB-Resisted Accelerations to Sled and Hill Training: Integrate SEB resistance alongside traditional sled and hill training to exploit the unique benefits of each. Sled towing (≤ 20% body mass) develops force application under constant load, while SEB resistance introduces progressive tension that may better sustain propulsion and reduce deceleration phases. Alternating these methods across a training cycle can provide a more comprehensive stimulus for acceleration development.

- 4. Potential Energy Utilization Through SEB Elastic Recoil:
 Leverage SEB's elastic recoil to enhance stride frequency
 and acceleration mechanics. Similar to plyometric drills that
 store and release elastic energy, SEB training can improve
 muscle-tendon efficiency (8). Tracking force-velocity changes
 over time helps determine whether athletes are effectively
 translating stored potential energy into forward propulsion.
- 5. Longitudinal Adaptation Tracking: Use a combination of timing gates, resisted acceleration and sprint tests, and kinetic/kinematic assessments to monitor long-term adaptations. Positive indicators include reduced ground contact time, maintained or improved stride mechanics, and improved acceleration split times. If performance stagnates or technique deteriorates, resistance parameters may require adjustment.

By applying these strategies, strength and conditioning coaches can systematically integrate SEB training into their acceleration development programs. The result is a more individualized, progressive, and evidence-informed approach to acceleration training that complements existing resisted sprint methods while expanding the strength and conditioning coach's toolbox.

CONCLUSION

SEB resistance training represents an innovative and practical approach to enhancing acceleration, providing a form of variable resistance that more closely mirrors the athlete's natural forcevelocity profile than traditional methods. By aligning resistance with the demands of acceleration, SEB training allows for more precise load prescription, improved force application, and enhanced sprint-specific adaptations. Importantly, the sliding tension assembly and associated regression equations presented in this article offer a starting point for standardizing SEB resistance—a crucial step toward maximizing its effectiveness. However, the successful application of SEBs requires thoughtful programming and ongoing monitoring. Strength and conditioning coaches must carefully balance kinetic and potential energy demands, ensure resistance is progressive (but not excessive), and integrate SEB training with complementary methods such as sled towing and uphill sprints. Future research should focus on longterm adaptations, sport-specific outcomes, and the integration of SEB training into comprehensive acceleration development models. Ultimately, standardizing SEB resistance training has the potential to transform how acceleration is developed across sports. In addition, SEB standardization offers strength and conditioning coaches a portable, cost-effective, and scientificallygrounded tool to enhance performance while maintaining the biomechanical integrity of acceleration.

REFERENCES

- 1. Alcaraz, PE, Elvira, JLL, and Palao, JM. Kinematic, strength, and stiffness adaptations after a short-term sled towing training in athletes. *Scandinavian Journal of Medicine and Science in Sports* 18(6): 765-772, 2008.
- 2. Alcaraz, PE, Palao, JM, and Elvira, JL. Determining the optimal load for resisted sprint training with sled towing. *Journal of Strength and Conditioning Research* 23(2): 480-485, 2009.
- 3. Anning, JH, Cook, A, Tommarello, D, Hays, C, and Hughes, CJ. The influence of series elastic bands on power during resisted running [abstract]. Poster session presented at 2015 National Strength and Conditioning Association Annual Conference. *Journal of Strength and Conditioning Research* 30(Suppl 1): S149, 2016.
- 4. Anning, JH, Hays, C, Tommarello, D, Cook, A, and Hughes, CJ. The effects of series elastic band resisted running on power in collegiate basketball players [abstract]. Poster session presented at 2015 National Strength and Conditioning Association Annual Conference. *Journal of Strength and Conditioning Research* 30(Suppl 1): S134, 2016.
- 5. Anning, JH, Hays, C, Tommarello, D, Cook, A, Sprigle, SH, and Hughes, CJ. Energy as a basis for analyzing series elastic band qualities during acceleration training [abstract]. Poster session presented at 2016 National Strength and Conditioning Association Annual Conference. *Journal of Strength and Conditioning Research* 30(Suppl 1): S130, 2016.
- 6. Anning, JH, Hughes, CJ, Calhoun, M, Tommarello, D, and Richardson, B. Standardization of individual and series elastic band resistance properties with custom designed slide tension assembly [abstract]. Poster session presented at 2014 National Strength and Conditioning Association Annual Conference. *Journal of Strength and Conditioning Research* 28(Suppl 1): S37, 2014.
- 7. Bachero-Mena, B, and González-Badillo, JJ. Mechanical and metabolic responses during sprint training under different loading conditions: influence of initial sprint velocity. *Journal of Strength and Conditioning Research* 28(10): 2719-2726, 2014.
- 8. Beattie, K, Carson, BP, Lyons, M, and Kenny, IC. The relationship between maximal strength and reactive strength. *Journal of Strength and Conditioning Research* 31(4): 1043-1050, 2017.
- 9. Clark, KP, Weyand, PG, and Van den Tillaar, R. The impact of timing system reliability on sprint performance assessment. *International Journal of Sports Physiology and Performance* 14(6): 845-852, 2019.
- 10. Dos'Santos, T, Thomas, C, Comfort, P, and Jones, PA. The effect of angle and velocity on change of direction biomechanics: An angle-velocity trade-off. *Sports Medicine* 48(10): 2235-2253, 2018.
- 11. Haugen, TA, Danielsen, J, Alnes, LO, McGhie, D, Sandbakk, O, and Ettema, G. On the importance of sprint start performance to sprint running performance. *Sports Medicine* 49(6): 975-991, 2019.

- 12. Paradisis, GP, Bissas, A, Pappas, PT, Zacharogiannis, E, and Cooke, CB. Effects of sprint running training on sloping surfaces. *Journal of Strength and Conditioning Research* 23(9): 2594-2599, 2009.
- 13. Petrakos, G, Morin, JB, and Egan, B. Resisted sled sprint training to improve sprint performance: A systematic review. *Sports Medicine* 46(3): 381-400, 2016.
- 14. Weyand, PG, Sternlight, DB, Bellizzi, MJ, and Wright, S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. *Journal of Applied Physiology* 89(5): 1991-1999, 2000.
- 15. Zabaloy, S, O'Reilly, MA, and Samozino, P. Effects of different resisted sprint training loads on sprint performance and mechanics. *Journal of Strength and Conditioning Research* 36(9): 2471-2480, 2022.

STANDARDIZING THE USE OF SERIES ELASTIC BANDS IN ACCELERATION TRAINING - PRACTICAL STRATEGIES FOR THE COACH

ABOUT THE AUTHORS

Jonathan Anning is an Associate Professor in Exercise Science at Slippery Rock University, where he teaches courses in biomechanics, resistance training, and research methods. He earned his PhD in Exercise Science with a Minor in Biomechanics from The University of Toledo, following a Master of Arts degree in Exercise Science and a Bachelor of Applied Arts in Sports Studies with an Exercise Science Minor from Central Michigan University. Anning is a Certified Strength and Conditioning Specialist® with Distinction (CSCS, *D®) and a Fellow of the National Strength and Conditioning Association (FNSCA). He has presented nationally on topics related to performance optimization and applied biomechanics, and has mentored students pursuing careers in athletic performance and rehabilitation sciences. His research interests include neuromuscular adaptations to resistance training and innovations in performance enhancement.

Christopher Hughes is a Professor of Physical Therapy at Slippery Rock University. He holds a PhD in Sports Medicine from the University of Virginia, a Master of Physical Therapy degree from Slippery Rock University, and a Master of Science degree in Exercise Science: Biomechanics as well as a Bachelor's degree in Health/Fitness from Springfield College. Hughes is a licensed physical therapist, board-certified Orthopaedic Clinical Specialist (OCS), and a Certified Strength and Conditioning Specialist (CSCS®) through the National Strength and Conditioning Association (NSCA). His professional background includes clinical and academic work focused on rehabilitation science, sports medicine, and biomechanics. He has extensive experience mentoring graduate students and contributing to interprofessional education in healthcare. His scholarly work emphasizes evidence-based approaches to injury prevention and return-to-play protocols.

Stephen Sprigle is a Professor at the Georgia Institute of Technology, where he directs the Rehabilitation Engineering and Applied Research Lab. He holds a PhD in Biomechanics and a Master's degree in Biomedical Engineering from the University of Virginia, a Master of Science degree in Physical Therapy from Mercy College, and a Bachelor of Science degree in Engineering Science and Mechanics from the University of Florida. Sprigle's interdisciplinary background bridges engineering and clinical sciences, with a focus on rehabilitation technologies, mobility, and assistive devices. His lab conducts applied research to improve functional outcomes for individuals with disabilities. Sprigle is widely published and is recognized for translating engineering principles into innovative clinical applications that enhance patient care and independence.

Chris Hays is the Assistant Director of Basketball Performance at Towson University, where he works primarily with the women's basketball team and oversees strength and conditioning for the women's tennis and gymnastics programs. He earned his Master of Science degree in Exercise Science with a concentration in Strength and Conditioning from George Washington University and his Bachelor of Science degree in Exercise Science from Slippery Rock University. A Certified Strength and Conditioning Specialist® (CSCS®) through the National Strength and Conditioning Association (NSCA), Hays has trained athletes across multiple sports at institutions including the University of Louisville, Los Angeles Dodgers Major League Baseball (MLB) team, Coppin State University, Drexel University, and Jacksonville University. His approach integrates scientific principles with individualized programming to optimize athletic performance.